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Abstract:  The paper discusses the center of gravity of several classes of right-cylindrical solids.
As the base of the solid, one can consider different shapes, such as circles, rectangles, or astroids.
Each solid considered has a fixed side, but a variable top, which acts as the roof of the solid.  As
the roof changes in some prescribed manner, the center of gravity G of the solid changes.  Thus
one can consider the problem of finding the locus of this center of gravity in space.  A computer
algebra system (CAS) such as Mathematica is a useful tool to study these locus problems.
Mathematica not only helps with calculating tedious triple integrals involved in solving the
problem, but also helps visualize the locus of G via animation techniques.  The paper also includes
some theorems describing the behavior of the center of gravity  G  as the solid changes.

1. The Center of Gravity of a Right-Elliptic Cylinder bounded by a Plane

Consider the right elliptic cylinder 1E  in three dimensions given by the equation

1// 2222 =+ byax , where a and b are fixed positive constants.   Let ),0,0( cP  be a fixed point on
the z-axis where c > 0 is a constant.  Let  P  be the plane through the point  P  with variable
normal vector >< 1,, ts  where  s  and  t  are real parameters.  It is then clear that the equation of
the plane  P  is given by (see [11] and [13] )

ytxscz −−= (1.1)

We will assume that  s  and  t  are such that the plane  P  will intersect the cylinder 1E  in the

upper–half space 0>z .  Let 1 S  be the solid bounded by the cylinder 1E , the plane  P , and the
XY-plane.

Figure 1.1  The solid 1 S  with the normal vector >< 1,, ts  at the point ),0,0( cP  on its roof



As the parameters  s  and  t  change, the roof of the solid 1 S  changes.  Therefore, the center of

gravity ),,( zyxG  of this solid changes.  We would like to study the behavior of this center of

gravity  G  for changing  s  and  t.  The coordinates yx,  and z  of  G are defined via certain four
triple integrals as follows ( see [11] and [13] ):

VIx x /= (1.2)

VIy y /= (1.3)

VIz z /= (1.4)

In the above equations, the four triple integrals zyx III ,,  and  V  are defined as

∫∫∫=
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where  D  denotes the solid region defined by the solid 1 S .  The best way to evaluate the above
four integrals is by means of a cylindrical-type coordinate transformation,

θθ SinrbyCosrax == ,  and zz = , where 10 ≤≤ r  and πθ 20 ≤≤ .  The Jacobian J of this
transformation is given by the following 3X3 determinant (see [11] and [13] ):
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It can be easily verified that rbaJ = .  Therefore, with the variable transformation, the first of the

integrals in equation (1.5) becomes, ∫ ∫ ∫
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algebra system (CAS) Mathematica can be used to evaluate this integral conveniently.  For
example, the following “Integrate” command of Mathematica can be used to evaluate the above
integral (see [10] and [14]):

Integrate[a*r*Cos[theta]*a*b*r, {theta, 0, 2Pi}, {r, 0, 1},
                                                 {z, 0, c-a*r*s*Cos[theta]-b*r*t*Sin[theta]}]

The output yields, 4/3bsaI x π−= .  Similarly, one can obtain that

8/)4(,4/ 222223 btascabIbtaI zy ++=−= ππ , and abcV π= .  Then equations (1.2)-(1.4)

imply that ),4/(),4/( 22 ctbycsax −=−=  and )8/()4( 22222 cbtascz ++= .  This means that the

coordinates of the center of gravity of the solid 1 S  is given by
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One can now calculate the locus of G in the three-dimensional space.  Using the “Eliminate”
command of Mathematica, or by hand, one can eliminate the two parameters  s  and  t  from the
three equations ),4/(),4/( 22 ctbycsax −=−=  and  )8/()4( 22222 cbtascz ++= .  This yields the

following equation, which is the locus of the center of gravity  G  of the solid 1 S :
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Note that the above equation (1.8) represents an elliptic paraboloid (see [11] and [13] ).

The preceding discussion leads to the following theorem:

Theorem 1.1  Consider the solid 1 S  bounded by (a) the fixed elliptic cylinder 1E  with equation

1// 2222 =+ byax , where a and b are fixed positive constants  (b) the variable plane  P  through
the fixed point P (0, 0, c) 0>c , with variable normal vector >< 1,, ts  where s and  t  are real
parameters, and  (c) the  XY-plane.   We assume that the parameters  s  and  t  are such that the
plane  P  intersects the cylinder 1E  in the upper-half space 0>z .   Then the center of gravity  G

of the solid 1 S  is given by ))8/()4(),4/(),4/(( 2222222 cbtascctbcsaG ++−−= .  Furthermore,
for changing  s  and t, the locus of G is an elliptic paraboloid given by the equation

)//(22/ 2222 byaxccz ++= .

Proof.  For a proof independent of Mathematica calculations, refer to [9]. q

The following Mathematica program, which utilizes the ideas discussed prior to Theorem 1.1,
helps visualize the locus of  G  in three-dimensional space.

Program 1.1

Clear[x,y,z,r,theta,a,b,c]
x=a*r*Cos[theta]; y=b*r*Sin[theta];                                                   (* Defines the variable transformation *)
j=Simplify[Det[{{D[x,r],D[x,theta],D[x,z]},{D[y,r],D[y,theta],D[y,z]},
                                      {D[z,r],D[z,theta],D[z,z]}}]];                                                (* Calculates the Jacobian *)
ix=Integrate[j*x,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
iy=Integrate[j*y,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
iz=Integrate[j*z,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
i=Integrate[j*1,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
{x0,y0,z0}=Simplify[{ix/i,iy/i,iz/i}]                                                                                             (*  Calculates G *)
Clear[x,y,z]
expr=z/.Solve[Eliminate[{x,y,z}=={x0,y0,z0},{s,t}],z][[1]]                                  (*  Calculates the locus of G *)
p1=ParametricPlot3D[Evaluate[{a*Cos[theta],b*Sin[theta],z} /.
                      {a->1,b->2}],{theta,0,3Pi/2},{z,0,10},DisplayFunction->Identity]             (* Plots the cylinder *)
p2=Plot3D[expr/.{a->1,b->2,c->5},{x,-2,2},{y,-2,2},Mesh->False,
                                              DisplayFunction->Identity]                                                        (* Plots the locus *)
Show[{p1,p2},PlotRange->{{-2,2},{-2,2},{0,10}}, DisplayFunction->$DisplayFunction]
p3:=Plot3D[c-x*s-y*t/.{a->1,b->2,c->5,t->s/3+Sin[s]+Cos[s]},
                         {x,-2,2},{y,-2,2},PlotRange->{0,10},DisplayFunction->Identity]                  (* Plots the roof  *)
Do[Show[Graphics3D[ {PointSize[1/40],RGBColor[1,0,0],Point[{x0,y0,z0}]}/. {a->1,b->2,c->5,
       t->s/3+Sin[s]+Cos[s]}], p2,p1,p3,  PlotRange->{0,10},DisplayFunction->$DisplayFunction],{s,-2,2,0.2}]



As some outputs of the program, one obtains the coordinates of  G, and the equation of the locus
of G, as given by equations (1.7) and (1.8) respectively. The program also produces an animation
of the center of gravity G.  When the animation is run, one can see the different positions of the
roof of the solid 1 S , along with the graph of the locus of  G as an elliptic paraboloid.  The position
of the center of gravity G can be seen as a red dot, moving along the surface of the elliptic
paraboloid inside the cylinder 1E . This is a good way of visualizing Theorem 1.1.  A few frames of
the animation are given below:

Figure 1.2.  An animation of the center of gravity G of the solid 1 S

In this section, we also observed how to use the CAS Mathematica as a tool for computation and
visualization.  For general references on Mathematica, the reader can refer to [2], [10], and [14].
For the usage of Mathematica as a visualization and a conjecture-forming tool refer to [3], [4], [6]
and [8].  For the usage of Mathematica as an animation tool, the reader can refer to [4], [5] and
[7].

In the next section, we will consider a different class of right-cylinders.

2.  The  Center  of  Gravity  of  a  Right-Rectangular  Cylinder  Bounded
      by  a  Plane

In the previous section, the base of the solid 1 S  was the region bounded by the ellipse

1// 2222 =+ byax .  One can now ask the question what will happen if we change the shape of this
base.  For example, this time one could consider a rectangular base.  Let R  be the rectangular
region defined by the inequalities axa ≤≤−  and bxb ≤≤− , where a and b are fixed positive
constants.  Let 2E  be the right-cylinder having the rectangular region R  as the base, and  P  be
the same plane we had defined in section 1 ( see equation (1.1) ).  We will again assume that the
parameters  s  and  t  are such that, the plane will intersect the cylinder 2E  in the upper-half space

0>z .

Let 2S  be the solid bounded by the right-rectangular cylinder 2E  and the plane  P .  As before, let

),,( zyxG  denote the center of gravity of the solid 2S , which are again defined via equations (1.2)-

(1.5).  In the present case, the triple integrals are performed over the solid region defined by 2S .



However, in order to evaluate the triple integrals, one does not need a variable transformation as in
section 1, because the base of the solid is a rectangular region.  In order to calculate the
coordinates of  G,  locus of  G, and to trace the position of  G in the three-dimensional space, one
can modify Program 1.1 in the preceding section as given below:

Program 2.1

Clear[a,b,c,d,s,t,p1,p2]
box=Graphics3D[{{Thickness[1/80],RGBColor[0,0,1],
   Line[{ {-a,b,0},{-a,-b,0},{a,-b,0},{a,b,0},{-a,b,0}}]}, {Thickness[1/80],RGBColor[0,0,1],Line[{{-a,b,0},
               {-a,b,d}}]},
   {Thickness[1/80],RGBColor[0,0,1],Line[{{-a,-b,0},{-a,-b,d}}]},
   {Thickness[1/80],RGBColor[0,0,1],Line[{{a,b,0},{a,b,d}}]},
   {Thickness[1/80],RGBColor[0,0,1],Line[{{a,-b,0},{a,-b,d}}]}}, Shading->False,Boxed->False]
i1=Integrate[x,{x,-a,a},{y,-b,b},{z,0,c-x*s-y*t}];
i2=Integrate[y,{x,-a,a},{y,-b,b},{z,0,c-x*s-y*t}];
i3=Integrate[z,{x,-a,a},{y,-b,b},{z,0,c-x*s-y*t}];
i4=Integrate[1,{x,-a,a},{y,-b,b},{z,0,c-x*s-y*t}];
{x0,y0,z0}=Simplify[{i1/i4,i2/i4,i3/i4}]
expr=z/.Solve[Eliminate[{x,y,z}=={x0,y0,z0},{s,t}],z][[1]]
a=3;b=2;c=8;d=10;
p1=Plot3D[expr,{x,-a,a},{y,-b,b},DisplayFunction->Identity,Mesh->False]
p2:=Plot3D[c-x*s-y*t/.s->t/3-Sin[t]+Cos[t],{x,-a,a},{y,-b,b},DisplayFunction->Identity]
Do[Show[{  Graphics3D[{PointSize[1/40],RGBColor[1,0,0],Point[{x0,y0,z0}]/.  s->t/3-
Sin[t]+Cos[t]}],box,p1,p2}, DisplayFunction->$DisplayFunction,PlotRange->{{-a,a},{-b,b},{0,d}}],{t,-1,3,0.2}]

For general values of a, b and c, the program will calculate the coordinates of the center of gravity
G, and the locus of  G, given by the following two equations respectively.
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According to equation (2.2), the equation of the locus of  G  is an elliptic paraboloid.  It is
interesting to compare this with the elliptic paraboloid obtained in the previous section, given by
equation (1.8).  The program also produces an animation of the center of gravity G, of which a few
frames are given below:

Figure 2.2  An animation of the center of gravity of the solid 2S



Our observations lead to the following theorem:

Theorem 2.1  Let R  be the rectangular region defined by the inequalities axa ≤≤−  and
bxb ≤≤− , where  a  and  b are fixed positive constants.  Let 2E  be the right-cylinder having the

rectangular region R  as the base, and  P  be the same plane we had defined in Theorem 1.1.
Assume that the parameters s and t are such that, the plane  P  will intersect the cylinder 2E  in the

upper-half space 0>z .  Let 2S  be the solid bounded by the right rectangular cylinder 2E  and the

plane  P .   Then the center of gravity of the solid 2S  is given by

))6/()3(),3/(),3/(( 2222222 cbtascctbcsaG ++−−= .  Furthermore, for changing  s  and  t, the

locus of  G  is an elliptic paraboloid given by the equation )//)(2/3(2/ 2222 byaxccz ++= .

Proof    One can directly calculate the four triple integrals corresponding to equation (1.5).  For
example,
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Thus, 3/4 3bsaI x −= .  Similarly, one can show that, ,3/4 3tabI y −=

3/)3(2 22222 btascabI z ++= , and  cbaV 4= .  Then equations (1.2)-(1.4) imply that

),3/(),3/( 22 ctbycsax −=−=  and  )6/()3( 22222 cbtascz ++= , which establishes the first part
of the theorem.  To calculate the locus of G, eliminate the parameters s and t from the three
equations  ),3/(),3/( 22 ctbycsax −=−=  and )6/()3( 22222 cbtascz ++= .  This yields the

relationship )//)(2/3(2/ 2222 byaxccz ++= , proving the second part of the theorem. q

In the next section, we will explore yet a different class of right-cylinders, known as the
generalized right-astroidal cylinders.

3.  The  Center  of  Gravity  of  a  Generalized  Right-Astroidal  Cylinder    
        Bounded  by  a  Plane

Recall that astroid is one of the classical Greek curves, given by the equation 3/23/23/2 ayx =+ ,
where a is some positive constant.  It has the parametric representation

πθθθ 20,, 33 <≤== SinayCosax .  The astroid is indeed the locus of a fixed point on a
smaller circle rolling inside a fixed larger circle, where the radius of the smaller circle is one
fourth of that of the larger circle (see [ 5], [7], and [15] ).  The astroid is a star-shaped closed
curve.



One can generalize the equation of the astroid in more than one way.  For example, one can
consider the plane curve given by the equation  1/2/2 =+ nn yx , where n > 1 is an odd integer.

Let R  be the plane region bounded by this curve, and let 3E  be the right-cylinder having R  as the

base.  We will call the cylinder 3E , a generalized right-astroidal cylinder.

Figure 3.1  The generalized right-astroidal cylinder 3E   for 5=n

Let  P  be the same plane as defined in section 1 ( see equation (1.1) ), passing through the fixed
point 0),0,0( >ccP .  We will assume that the parameters  s  and  t  are such that the plane  P
will intersect the cylinder 3E  in the upper-half space 0>z .  Let 3S   be the solid bounded by the

cylinder 3E , and the plane  P .  We are interested in studying the center of gravity ),,( zyxG  of

this solid 3S , for changing  s  and  t.

Unlike the corresponding situations in the previous two sections, the solid 3S  poses a significant

challenge. The main reason is that Mathematica shows difficulty in directly evaluating the
corresponding integrals in equation (1.5), even with a variable transformation.  For example,
consider the transformation zzSinryCosrx nn === ,, θθ , where 10 ≤≤ r  and πθ 20 <≤ .
Using equation (1.6) it is easy to see that the Jacobian J of this transformation is given by

θθ 11 −−= nn SinCosrnJ .  Therefore, the first integral of equation (1.5) becomes
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Mathematica shows difficulty in evaluating the above integral (3.1) directly.  The strategy is to do
the integral (3.1) partly by hand, break into three integrals, and then use Mathematica.  Without
any difficulty, one can perform the innermost integral of equation (3.1) with respect to z, to obtain
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Since n is an odd integer, one can write n = 2m + 1 for some integer m.  Then it is easy to see that
we can break equation (3.2) into the following three integrals:
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The task is now to handle the integrals (3.4)-(3.6).  The first and the last of them are similar,
involving an odd power for the cosine term.  Mathematica again shows difficulty evaluating them
directly.  However, using a simple trigonometric substitution θCosu = , and the periodicity of the
sine function, it is not too hard to establish that 031 == xx II .  However, Mathematica is indeed

successful in  evaluating the integral  2xI , yielding
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where )(xΓ denotes the Euler’s Gamma Function (see [1] and [12]).  Thus equations (3.3) and
(3.7) imply that
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In a similar fashion, one can show that
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 Thus, we are able to calculate all four triple integrals zyx III ,,  and V using the Euler’s Gamma

Function. The Euler’s Gamma Function is one of the special functions in mathematics, that is
widely used in physics and applied mathematics.  For the readers’ convenience, we will below
include the definition and some properties of this function (see [1] and [12]).



Definition 3.1  For any real number 0>x , the Euler’s Gamma Function Τ  is defined as

∫
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1)( dttex xt .

It can be shown that the improper integral in the above definition is convergent for any 0>x .
One can use the definition to establish a number of properties of the Euler’s Gamma Function, of
which a few are listed below (see [1]).  These results will be used to derive Corollary 3.1.

Proposition 3.1  The Euler’s Gamma Function Τ  has the following properties:
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Proof   This follows from the Definition 3.1 above.                                                                        q
Returning back to the discussion on the center of gravity of the solid 3S , using equations (3.8)-

(3.11), one can now calculate the ratios ,/,/ VIVI yx  and VI z / .  This yields the following three

coordinates of the center of gravity of the solid 3S :
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One can now  use the “Eliminate” command of Mathematica, or use hand calculations to
eliminate the parameters  s  and  t  from the above three equations (3.12)-(3.14).  This yields the
following equation of the locus of the center of gravity of the solid 3S :

)(
)2/33()1(

)24(

22
22

2
yx

mm

mcc
z

m
+

+Τ+Τ
+Τ

+=
π

(3.15)

One is now in a position to record the following theorem:

Theorem 3.1  The center of gravity  ),,( zyxG  of the solid 3S  is given by the equations (3.12)-

(3.14) above.  Furthermore, for changing  s  and  t, the locus of G is an elliptic paraboloid given by
the equation (3.15) above.



Proof  Most of the proof is contained in the discussion preceding the statement of the theorem.
The reader is encouraged to complete the missing details. q
Corollary 3.1  The equation of the locus of the center of gravity of the solid 3S  can also be written

as
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Proof  Follows at once from the equation (3.15) and the Proposition 3.1. q
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