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The nature of mathematical concepts has been the subject of some scrutiny in the mathematics education
literature. One of the key ideas described in the literature is the distinction between the process and object
perspectives of concepts. What is not so clear is how this distinction translates into different
symbolisations and representations of the concept, and how students can construct the versatility to be able
both to interact with these, and to translate between them. This paper describes the initial stages of a study
which aims to use the dynamic multiple representations of a calculator’s computer algebra system (CAS)
to promote improved understanding of differentiation. In particular it looks at student interpretation of the
symbolisation dy

dx
 and their ability to relate this across different representations. The results of the study

show that the students surveyed lack representational fluency for the concepts associated with this
symbolisation,  and that this appears to be due to their process perspective of the symbol. They have not
yet encapsulated the differentiation process, as represented by the symbol, into the derivative object. Some
implications for teaching and learning which can address this using the CAS calculator are considered.

Background

Symbolisation is a process which is at the very core of all learning, and especially so in
mathematics. It involves forming a correspondence between two worlds, the one being symbolised
and the one containing the symbols. The former may be physical or abstract, and the latter may be
internal or external. Some authors, such as von Glasersfeld (1987) and Cobb (2000) have used the
idea of symbolic representation to refer to externally written or spoken symbols which stand for
something perceived as an experiential item; a segment of experience that has been sifted from the
rest of experiences as a distinguishable piece, external, concrete entities, such as a mark on paper,
or a display on a computer screen (or any technological device), or an arrangement of physical
materials interpreted, standing for, or signifying, something else. However, symbols seem much
broader in compass than this. When we see a physical shape we may interpret it as a particular
mathematical shape using symbolism to link it with internal, mental imagery comprising the word
square, or a prototypical image of a square. Symbolisation can thus be seen as involving the
appropriation of meanings, between constructed cognitive structures, and between these structures
and their external representational forms.

The way human minds try to understand their world of experience is through the construction
of models which lead them toward understanding, or construction of a mental representation of a
model (Moreno and Sacristan, 1995). When we are confronted with mathematical problems, we
exploit visual and mental images, subsequently coding them into symbolic forms or representations.
We may introduce language, symbols, graphs and organizational schemes that focus on
hypothesised relationships, patterns and regularities attributed to the problem at hand (Lesh, 1999).
Thus, according to Kaput (1987), a represented world emanates from an individual’s interaction
with the environment, producing mental events, which when acted upon by the mind produces
mental/cognitive structures. In essence, the represented world is a cognitive construction of the
individual as he interacts with the environment; an internal representation of the individual of his
experience with this environment. This mental representation refers to the internal schemata or
frames of reference used to interact with the external world (Dreyfus, 1991). Considering



mathematics in this way as comprising internal mental operations, implies that meaning evolves
through association of those mental operations with mathematical symbols (Lerman, 1994). This
association may then be re-expressed and translated (re-presented) for the purpose of
communication (Noss and Hoyles, 1996; Yackel, 2000). A symbol or notation system provides a
means by which one represent a mathematical structure is sometimes called a representation system
(Kaput, 1998), and the words have been used interchangeably. The correspondence and the
relationships between the represented and the representing worlds is defined by Goldin (1987) as
symbolisation.

Student interaction with symbols

Every representational system uses symbols, and rules to connect those symbols. The
establishment of this correspondence, however, is not free from ambiguity (Goldin, 1987). In the
classroom context where students’ experiences differ, interpretation of a given symbol may come in
a variety of ways. When a new symbol is introduced by the teacher as a new notation for a
mathematical concept, students try to assimilate it to their existing schemas, which may bring
clusters of templates where it may fit, evoking meaning within available schemas derived from
individual experiences. It is when the students enter into a discourse among themselves, or with the
teacher, that the meaning constituted by the symbol is appropriated, through negotiation. In
classroom situations, the negotiation of meaning between the teacher and the students is necessary,
as the former directs the students to the taken-as-shared understanding of the symbol, together with
its meaning. As Sfard (2000, p. 66) says, Òconversational feedback plays a central role in discursive
and experiential background for the introduction of the sign.Ó

This research considers the algebraic symbol rich area of differentiation. Here symbols such
as ′f x( )or dy

dx  may be interpreted in two quite different ways. They may be understood as a process

(of differentiation), where a function has to be differentiated with respect to a variable x, or they
may be interpreted as an object, the derivative of the function with respect to x, that is the derived
function. These two perspectives are related of course, and the differentiation process needs to be
encapsulated as the derivative object in order for one to be able to operate further on the resulting
function. This encapsulation of processes as objects occurs in many places in mathematics and has
been the subject of considerable analysis (Dubinsky, 1991; Tall, 2000). Further, the combination of
algebraic symbols, evoking a process, and/or a concept has been defined by Gray and Tall (1994) as
a procept. This process/object (or process/concept) duality of symbol use draws attention to a better
and deeper understanding of mathematical objects and the process by which concepts are built and
represented (Graham and Thomas, 2000). Hence, what may at first appear to be an ambiguity of
symbol use is in fact part of the requirement of versatility of symbol interpretation which arises in
many parts of mathematics. Such richness of interpretation of symbol use is not automatic though
and needs to be constructed by the individual, and an analysis of this process is one aim of this
study.

Proceptual understanding finds an analogue in the interpretation of the function of symbols as
signs or counterparts (Pimm, 1995). As a sign, the symbol names or points to something else,
drawing attention away from the symbol to what it represents. When a symbol acts as a counterpart,
an actual relation or connection exists between the object and its symbol. This latter perspective
leads to its manipulation — one acts on it and treats it as if it were the object. In contrast, the use of
symbol as a sign directs one to what it stands for, or to what it represents. Applying this to the
symbol dy

dx , we can say that its use as a counterpart points one, via the use of the variables y and x,

to the process of differentiation, or at least to a procedure for it to be applied. Functioning as a sign,



however, dy
dx  may be seen as representing either a derived function, or a gradient (of a tangent), or a

rate of change; ideas that have nothing directly in common with the symbol.

Representational versatility

The meaning of mathematical constructs, rather than existing in a single representation
system, tends to be distributed across several interacting representational systems, with each
emphasising and de-emphasising different characteristics of the constructs (Lesh, 1999, 2000). The
ideas grow in various modes and forms of representation with each supporting an aspect of
mathematical thinking (Tall, 1994). Thus, making multiple representations available can tend to
improve the capacity for learning, provided the links between them are addressed (Kaput, 1992;
Noss and Hoyles, 1996). In particular, since each representational form captures a special aspect of
the concept, equivalence of meaning between any two representational forms must be established.
This ability to establish meaningful links between and among representational forms and to
translate from one representation to another has been referred to as representational fluency (Lesh,
1999), or as representational competence (Shafrir, 1999). Thomas and Hong (2001a, b) have
introduced the concept of representational versatility to include both fluency of translation between
representations, and the ability to interact procedurally and conceptually with individual
representations.

One avenue which we consider holds promise of encouraging students’ representational
versatility is the integration in learning schemes of graphic calculators, including those with built-in
computer algebra systems (CAS). These calculators not only employ a number of linked
mathematical representation systems, such as tables, algebraic symbols, graphs and ordered pairs,
but they do so in a way that provides a dynamic environment with instant feedback. Their
forerunner, the graphic calculator (GC), has for some time been suggested as capable of supporting
the construction of mathematical meanings across representations (Kaput, 1989). Ruthven (1990)
demonstrated that this could be the case by using GCs to help students link graphic and algebraic
representations. They were assisted to recognise when a given graph came from a family of curves,
and the  multi-representational features of the GC were shown to enrich problem solving strategies.
One study with students on the influence of GCs on quadratic function graphing (Asp, Dowsey, and
Stacey, 1993) reported a significant improvement on interpreting graphs and matching their shape
with symbolic algebraic forms. Another by Harskamp, Shure, & Van Streun (2000) showed that
access to GCs improved students function graphing approaches. However the research of Gray and
Thomas (2001) reported mixed results on their efforts to employ GCs to help students link different
representational forms.

The above discussion supports the contention that in order to understand how students build
understanding of derivatives and differentiation, it is important to investigate their representational
abilities. The research reported on here forms part of a much larger study investigating how the use
of CAS graphic calculators might enhance student conceptual understanding of differentiation, and
records the results of a pilot study investigating the representational fluency of students. In
particular it aims to assess the role of students’ concept representation in understanding of
differentiation and derivatives, addressing the following questions:

(i) How do the students understand symbols such as ′f x( ) or dy

dx
?

(ii) What concepts do they attach with the use of ′f x( ) or dy

dx
 in different

representational contexts?



(iii) What representational translations involving differentiation concepts are
students capable of?

(iv) What representational forms do they use in solving problems involving
derivatives?

Method

In order to ascertain how we might advantageously utilise the CAS calculators in the multi-
representational learning of  differentiation we first need to know what level of representational
versatility students have.

1. If  y f x= ( ) is a function, which of the following are functions? Give reasons.

(i) ′f x( )   (ii)
dy
dx

f x+ ′′( )  (iii) Lim
h

f x h f x

h→

+ −
0

( ) ( )

4. Write the following in symbols:
(i) The gradient of a function f(x) changes at the rate x.

(ii) For a function y, 
dy

dx
 changes at the same rate as y.

(iii) The gradient of a function y x= 5 changes at the rate x. Write this in terms of x only.
5. Explain in words what the following notations mean to you.

(a) 
dy
dx

k= , where k is a constant

(b) d y
dx

m
2

2 = , where m is a constant

(c) 
d

dA

dp
dp

dA

dp

( )
=

6. If ′f ( )5 = 1 and f a( )5 3= , use this information, and that on the graph of f(x) below, to find the
value of a.  [The given line is a tangent to the graph at x=5]

7. For the function g(t) shown in the table, write down the average rate of change of g(t) from
t = 0 to t = 1.

t g(t)
0 0
1 k
2 3
3 16
4 47

10. What do you understand 
dy
dx

 to stand for/represent in each of the following?

a) Rate of change of y wrt x  b) The gradient of the tangent of y=f(x) c) The derivative of y wrt x
d) A differential  e) A term in an equation f) None  g) Other: ______________

(i) 
dy
dx

= 3   (ii) 
dy
dx

x=5    (iii) 
dy
dx

y=4   (iv) z
d

dx

dy

dx=
( )

  (v) 
dz
dx

dz
dy

dy
dx

= ⋅   (vi) 2 1x
dy
dx

+ =

Note: The format of some questions has been changed here (e.g. space for writing answers) to save space.

Figure 1. Examples of the test questions.
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 To gauge this a test was constructed and administered to thirty-two Year 13 students (aged
16 or 17 years) in a top-performing all-girl school in Auckland, New Zealand. It was made clear to
the students that the test results would not be included in the school’s assessment of their
performance. The students had all studied basic derivatives and differentiation techniques in Year
12, and the test was given after their first Year 13 differentiation module. It was designed to probe
student understanding of derivatives and their ability to translate between representational forms. In
order to investigate how students understand and represent derivatives in various representational
forms, and to account for their representational versatility, problems were designed which required
students to translate from one representational form to another (see Figure 1 for examples of
questions), including translations from words to symbols and symbols to words. Other problems
included the use of algebraic, graphical and tabular representations with the aim of investigating
how students understand them and whether they could translate the given representational forms
into others.

As can be seen in Figure 1, question 10 gave some examples of basic equations containing dy

dx
in which it might be understood in subtly different ways, and students were asked to classify each
as either a rate of change, derivative, gradient, differential or as a term in an equation. Our
expectation was to check whether students could see that while the notation can have different
interpretations, in the absence of a context any of them could be appropriate. Question 4 addressed
the symbolisation of rate of change of gradient and question 5 asked for an interpretation of
algebraic symbols, including one which requires appreciation of the use of dA

dp
 to represent an object

rather than a process. Question 6 looked at the linking of ′f x( ) with a graphical representation and
question 7 rate of change with a tabular one.

Results

Of the thirty-two students taking the test, twenty-two students either completely or partially
answered the test, while a further six students did not write anything on their papers. When the
school was questioned about this it became clear that a small number of students had taken a less
than serious approach to completing the questionnaire, not bothering to fill anything in. While this
was disappointing, it had been made clear that the test was entirely voluntary and would not count
towards their assessment. The analysis and interpretation presented below of the results of the 22
responses is based on representational versatility, that is the interaction with and translations
exhibited by the students. These interactions and translations, whether explicit or incidental were
identified and classified.

dy
dx

: Derivative, rate of change and gradient

Table 1 gives a summary of the interpretations of the use of dy

dx
 in question 10 (see Figure 1).

It was evident in students’ translation and interpretation of the symbols that they had engaged with

the use of the symbol dy

dx
 both as a derivative of y with respect to x (y wrt x), as a rate of change,

and as the gradient of a tangent of y f x= ( ) . However, interestingly, the students, gave quite varied

interpretations of the meaning of dy

dx
 depending on its contextual use. For example, the number of

students who interpreted the use of dy

dx
 in dy

dx
= 3 as a rate of change of y wrt x slightly increased



when the equation for which it was used was changed to dy

dx
x= 5  (from 14 to 16). But when the

right-hand-side of the equation involved the y variable, as in dy

dx
y= 4 , there was a drop in this

(χ2=3.28, n.s) with only 7 students classifying dy

dx
 as a rate of change of y wrt x.  However, when

dy

dx
 was used in the equation 2 1x

dy

dx
+ = , there was a significant drop (to 3, χ2 = 9.59, p<0.05) in the

number of students who viewed it as a rate of change of y wrt x, and this further reduced to 1 in the
other two cases.

Table 1

 Student interpretations of dy

dx
Expression/

interpretation
Rate of
change

Gradient of
tangent

Derivative Differential Term of an
equation

dy
dx

= 3 14 10 14 0 1

dy
dx

x=5 16 6 11 0 2

dy
dx

y=4 7 4 7 4 1

z
d

dx

dy

dx=
( ) 1 1 0 5 3

dz

dx

dz

dy

dy

dx
= ⋅ 1 0 0 5 4

2 1x
dy
dx

+ = 3 0 5 0 8

A very similar pattern can be seen in the interpretation of dy

dx
 as a gradient of tangent to

y f x= ( ) , and as a derivative. In the expression dy

dx
= 3, 10 students responded that dy

dx
 represents a

gradient; with dy

dx
x= 5 , there were 6; for dy

dx
y= 4 , four; but for the equation 2 1x

dy

dx
+ = , no one chose

the option of dy

dx
 representing gradient. Likewise with regard to interpreting dy

dx
 as the derivative of

y wrt x, the number of corresponding responses decreased similarly (see Table 1).

The pattern of answers for interpreting dy

dx
 as a term in an equation was quite different. The

number of corresponding responses increased rather than decreased. This provides further evidence
of a well-known case in the literature that students often interpret the use of an equals sign as a
signal to do something and produce an answer (Thomas, 1994). However, there is more than that
here. The tendency to view an equation in this way seems to decrease as the complexity of it
increases. In the first three equations virtually none of the students saw them as equations, probably

because the dy

dx
 appears alone on the left hand side, leading them to the process and result

interpretation of the symbols. In the equations where they leave this interpretation the dy

dx
 is no

longer singular and in two cases appears on the right.



The distinction between dy

dx
x= 5  and 2 1x

dy

dx
+ =  here is a particularly interesting one, given

that both equations can have the form dy

dx
 = f(x) where f(x) is linear. 72.7% see dy

dx
 in the first of

these as standing for a rate of change, but this drops to just 13.6% for the second. On the other

hand, only 9.1% see dy

dx
 in the first case as a term in an equation, but this increases to 36.4% for the

second. All of this seems to be clear evidence that the role of symbols is very subtle and we need to
pay close attention to the representational systems in which students meet various symbolisations in
differentiation and encourage them to make links which can increase their representational fluency.

Translation from algebraic symbols to words

When asked to explain in words what the notation dy

dx
k= ; where k is a constant meant, the

students’ responses were as follows: a gradient (7), a derivative (3), or a rate of change (2). This was
in contrast with the results of question 10, where a similar format with k=5, produced 14 choosing
each of rate of change and derivative, and only 10 selecting gradient. Again their choices seem to be
extremely sensitive to small changes in the context of the symbols. Some students provided
graphical interpretation for the symbols describing: the Ògraph is a straight lineÓ , or Òconstant
function — eg. a straight line where m is always the same,Ó or Ò this is a straight — gradient constant
at k (straight, horizontal line).Ó Though these interpretations might not yield correct answers, they
do indicate that the students had created links between graphs and algebraic symbols.

Similarly, when the students were asked to describe in words d y

dx
m

2

2 = , where m is a constant,

they explained it as the gradient of the gradient/tangent (3), or the rate of change of gradient/change
(3), or the second derivative is m  (5). One student interpreted the symbols as a process (or
procedure) indicating it was symbol used Òto determine max or min points.Ó Two students
seemingly gave a graphical interpretation writing that Òthe concavity of the function y doesn’t
changeÓ, and Òfunction = a parabola.Ó These latter answers again point to the strength of influence
of the learning context on understanding of symbols.

With the symbols 
d

dA

dp

dp

dA

dp







= , one student saw dA

dp
on the right-hand-side as different from its

counterpart on the left-hand-side describing Òthe rate of change of A in respect to p is the same as

the rate of change of A’s derivative in respect to p.Ó It appears that the position of dA

dp
 in its context

changed its meaning for this student, from derivative on one side to a rate of change on the other.
Two students classified the notation as the second derivative of a parametric function indicating
lack of flexibility on the meaning attached to the use of letters, such as p. They linked it to a context
where they had used this letter a lot, namely the parametric representation of function in co-ordinate
geometry. One student also translated the equation to another symbol form to interpret it, writing,

′′ = ′f x f x( ) ( ) - point of inflection. In addition to introducing new symbols, it is evident that the
student is assigning a graphical interpretation to the notation.

Translation from words to algebraic symbols

Translations from words to symbols were also required in answers to problems such as ÒThe
rate of change of the area of the shape Éis 1

10
 of the area A at any given time. Write this in



symbols.Ó  A considerable number (13) of students used dA

dt
.  Similarly, with the problem Ò The rate

of change of the area A wrt r Éis 1
10

 of r. Write this in symbols,Ó they used dA

dr
 (14 students). The

students’ answers indicates that in this case they were able to discriminate successfully between the
phrases rate of change implying time, and rate of change wrt r, evoking in them the use of the

symbols dA

dt
 and dA

dr
, respectively.

Translations involving other representations

Questions 6 and 7 both require the solver to be able to link across two or even three
representations. In the first of these the students have to relate the algebraic form ′f ( )5 = 1 with the
gradient of the tangent at x=5 for the given graph. Since no formula was given for the function f it
was not possible to find the gradient of the tangent at this point any other way. Only three students
(13.6%) made this link, with only one going on and correctly solving the problem, while 17
students (77.3%) did not write anything at all. Question 7 on the other hand involved the linking of
the words Ôaverage rate of changeÕ of g with a tabular representation. We had considered that many
students might have a reasonably clear concept of average rate of change graphically and wondered
if this would translate to the table form. In the event 14 students (63.6%) wrote nothing in response
to this question. There were 5 correct solutions (22.7%), two of whom needed to introduce a third
representation, an algebraic one, into the problem. The rate of change was strongly linked in their

schemas with an algebraic form of the derivative and they wrote dg

dt
k=  (not, interestingly

′ =g t k( ) ). A third student also used dg

dt
 but incorrectly obtained 1

k
 as the answer. The results on

these two questions again confirm that the representational fluency of these students is not strong in
this content area, and that our planned calculator research to address this could prove useful.

Conclusions

The results of this preliminary study confirm that students do indeed have different
interpretations the concepts of derivative and differentiation depending on the representational
system in which they are symbolised. The following summary outlines some of the key conclusions
from the study of students’ interpretation of  representations:

•  The interpretation of algebraic symbols such as dy

dx
 in an equation varies

depending on the context in which it is used. Further this interpretation is very
sensitive to minor contextual changes, such as whether it is expressed as the
subject of an equation or whether the right hand side is a constant or a variable.

•  The influence of the differentiation context in which algebraic symbols are first
encountered is strong. This confirms the need for students to experience a number
of contexts and a number representational systems for each construct.

• There is a support for a proceptual interpretation (Gray and Tall, 1994) of the use

of symbols such as dy

dx
. Students see these either as representing a process (of

differentiation) or as a concept (of derivative), depending on context and other
factors.

• There is evidence to show that students do make use of other representations in
making sense of the given representation in differentiation, especially the graphical
form. These can be summarised by the following translational shifts in



representation: words to symbols, symbols to words, symbols to graphs, and
symbols to symbols.

•  The students, who are from a top performing school, showed weakness in their
representational fluency when asked to translate concepts across unfamiliar
representational boundaries.

While the results of this study cannot be generalised they do indicate that there is a need to
develop greater representational versatility among students. There are many opportunities to use a
CAS calculator to assist students to construct such fluency. For example, we found that students

were more likely to view algebraic symbols such as dy

dx
 as a gradient if it was equated with a

constant. Using a dynamic CAS environment they could be helped to see gradient as dynamic rather
than static, and so come to appreciate that it can be represented by a variable quantity. There seems
no doubt that student use of symbol can be informative about how they perceive a problem
situation, and thus provide guidelines in designing suitable interventions (Dufour-Janvier, 1987). In
order to help students in their construction and development of mathematical concepts and their
representation, the knowledge of their ability to translate from one representation to another
provided here will serve as a useful instrument in the design of instructional modules and materials
which use integrated CAS calculators to guide students in their representation-building processes. It
is, however, important to underscore that it is the students who must do the work of building and
revising their representations, and that the role of the teacher is to provide clear guidance and
direction along with rich opportunities for successful construction. It is, therefore crucial that the
teacher creates an environment that will enhance meaningful use of symbols and multi-
representational aspects of concepts, and where there is access to the students’ symbol use in
relation to their understanding of mathematical concepts. It is our contention that CAS calculators
can form a valuable part of such environments, as we hope our further research will confirm.
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