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Abstract. In this paper we introduce two kinds of k-Waring polynomials. Corre-
spondingly, we introduce two kinds of iterated sequences, the k-Waring sequences. The
iteration properties of the k-Waring polynomials are discussed. The applications of the
two kinds of k-Waring sequences to accelerating convergence are recommended. Fast
algorithms for high accuracy computation of square-root and other quadratic irrational
number are stated.
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1. DEFINITIONS AND INTRODUCTION

It is known that the Waring formula [6] is

[k/2]∑
i=0

(−1)i k

k − i

(
k − i

i

)
(x + y)k−2i(xy)i = xk + yk (k ∈ Z+). (1.1)

We introduce two kinds of polynomials associated with the Waring formula. They are the

k-Waring polynomial of the first kind

pk(x, y) =

[k/2]∑
i=0

(−1)i k

k − i

(
k − i

i

)
xk−2iyi (k ∈ Z+), (1.2)

and the k-Waring polynomial of the second kind

qk(x, y) =

[k/2]∑
i=0

k

k − i

(
k − i

i

)
∆

k−1
2
−ixk−2iyi (k ∈ Z+, k is odd), (1.3)

where ∆ = a2 + 4b 6= 0.

Correspondingly, we introduce two kinds of iterated sequences. They are the k-Waring

sequence of the first kind {wn(k; a, b)} and the k-Waring sequence of the second kind
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{hn(k; a, b)} which are defined as

wn+1(k; a, b) = pk(wn(k; a, b), (−b)kn

), w0(k; a, b) = a, (1.4)

and

hn+1(k; a, b) = qk(hn(k; a, b), (−b)kn

), h0(k; a, b) = 1, (1.5)

respectively.

Our main purposes are to deal with the iteration properties of the Waring polynomials

and to develop the applications of the Waring sequences. In Section 2 explicit expressions

of wn(k; a, b) and hn(k; a, b) are given. It will be seen that the expressions are related to

F-L (Fibonacci-Lucas) sequences. In section 3 we give a fast algorithm for high accuracy

computation of square-root by using Waring sequences. In section 4, for computing other

quadratic irrational number, we introduce the Waring transformation. It will be observed

that for the computation of quadratic irrational number our method is faster than the

Aitken acceleration and other methods.

2. WARING SEQUENCES AND F–L SEQUENCES

Let a and b be constants. In [1] sequence {un(a, b)} and {vn(a, b)} satisfying

un+2(a, b) = aun+1(a, b) + bun(a, b), u0(a, b) = 0, u1(a, b) = 1 (2.1)

and

vn+2(a, b) = avn+1(a, b) + bvn(a, b), v0(a, b) = 2, v1(a, b) = a (2.2)

is called generalized Fibonacci sequence and generalized Lucas sequence, of second order,

respectively. And in [7] they are said to belong to second order F-L (Fibonacci-Lucas)

sequences. Let

∆ = a2 + 4b, α = (a +
√

∆)/2, β = (a−
√

∆)/2. (2.3)

Then

α + β = a, αβ = −b, α− β =
√

∆. (2.4)
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If ∆ 6= 0 we have the Binet formulas[1]

un(a, b) = (αn − βn)/(α− β), (2.5)

vn(a, b) = αn + βn. (2.6)

Lemma 2.1.

pk(vn(a, b), (−b)n) = vkn(a, b), (2.7)

qk(un(a, b), (−b)n) = ukn(a, b) . (2.8)

Proof. From (1.2), (2.6), (2.4) and (1.1) we have

pk(vn(a, b), (−b)n) =

[k/2]∑
i=0

(−1)i k

k − i

(
k − i

i

)
vk−2i

n ((−b)n)i

=

[k/2]∑
i=0

(−1)i k

k − i

(
k − i

i

)
(αn + βn)k−2i(αnβn)i

= (αn)k + (βn)k = vkn(a, b).

From (1.3), (2.5), (2.4) and (1.1), we have

qk(un(a, b), (−b)n) =

[k/2]∑
i=0

k

k − i

(
k − i

i

)
∆

k−1
2
−iuk−2i

n ((−b)n)i

= (α− β)−1

[k/2]∑
i=0

(−1)i k

k − i

(
k − i

i

)
(αn − βn)k−2i(αn(−βn))i

= (α− β)−1((αn)k + (−βn)k) = (αkn − βkn)/(α− β) (Since k is odd)

= ukn(a, b).

�

Theorem 2.2. For n ≥ 0,

wn(k; a, b) = vkn(a, b), (2.9)

hn(k; a, b) = ukn(a, b). (2.10)

Proof. By the definition we have w0 = a = v1 = vk0 . Thus (2.9) holds for n = 0. Assume

that (2.9) holds for n. Then by (1.4), by the induction hypotheses and by (2.7) we get

wn+1(k; a, b) = pk(wn(k; a, b), (−b)kn

) = pk(vkn(a, b), (−b)kn

) = vkn+1(a, b).
3



Hence (2.9) holds for any n ≥ 0. The proof of (2.10) can be finished in the same way. �

3. FAST ALGORITHM FOR COMPUTING SQUARE-ROOT

In the subsequential discussions of the paper we always assume that a, b ∈ Z, ab 6= 0,

and ∆ > 0 is not a perfect square. Besides, we always assume that k is odd.

Let d be a positive integer that is not a perfect square. In [5] M. I. Ratliff gave an

algorithm which produces a sequence of rational numbers that converges quadratically to

the square-root of d. Here we provide an algorithm which produces a sequence of rational

numbers that converges by kth-power to the square-root of d for given k.

Theorem 3.1. Let d ∈ Z+ not be a perfect square so that it can be expressed as

d = a2
1 + b1 (a1 ≥ 1, 1 ≤ b1 ≤ 2a1). (3.1)

Let

tn =
wn(k; 2a1, b1)

2hn(k; 2a1, b1)
. (3.2)

Then

(1)

lim
n→∞

tn =
√

d; (3.3)

(2)

lim
n→∞

|tn+1 −
√

d|
|tn −

√
d|k

=
1

(2
√

d)k−1
; (3.4)

(3)

tn <
√

d < tn + ε, (3.5)

where

ε =
2(16a6

1 + b1(8a
4
1 − 2a2

1b1 + b2
1))(b(8a

4
1 − 2a2

1b1 + b2
1)

2)kn

(16a5
1)

2kn+1
. (3.6)

Remark. (3.3) and (3.4) indicate that the sequence {tn} converges by kth-power to
√

d for given k; (3.5) estimates the error of tn as the asymptotic value of
√

d.

Proof. Let a = 2a1 and b = b1. Then from (2.3) we have α = a1 +
√

a2
1 + b1 = a1 +

√
d

and β = a1 −
√

a2
1 + b1 = a1 −

√
d. Thus α > 0, β < 0 and |α| > |β|.
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(1) From (3.2), (2.9), (2.10), (2.6) and (2.5) we have

tn =
vkn

2ukn

=
√

d
αkn

+ βkn

αkn − βkn =
√

d
1 + (β/α)kn

1− (β/α)kn →
√

d (n →∞);

(2) From the above

|tn −
√

d| =
√

d

∣∣∣∣ 2βkn

αkn − βkn

∣∣∣∣ . (3.7)

Whence

|tn+1 −
√

d|
|tn −

√
d|k

=
1

(
√

d)k−1

∣∣∣∣∣ 2βkn+1

αkn+1 − βkn+1

(
αkn − βkn

2βkn

)k
∣∣∣∣∣

=
1

(2
√

d)k−1

(1− (β/α)kn
)k

1− (β/α)kn+1 → 1

(2
√

d)k−1
;

(3) Expanding
√

1 + x by the Maclaurin’s formula we get

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
(1 + θx)−7/2x4, (0 < θ < 1).

Then
√

1 + x < 1 +
1

2
x− 1

8
x2 +

1

16
x3. (3.8)

Whence for x > 0

(
√

1 + x− 1)2

x
< x

(
x2 − 2x + 8

16

)2

. (3.9)

Since β < 0, |α| > |β| and k is odd, then tn <
√

d and from (3.7) we get

|tn −
√

d| < 2
√

d

∣∣∣∣βα
∣∣∣∣kn

.

Letting x = b1/a
2
1 in (3.9) the last inequality can be transformed to

|tn −
√

d| < 2
√

d

(√
1 + x− 1√
1 + x + 1

)kn

=2
√

d

(
(
√

1 + x− 1)2

x

)kn

<2
√

d
(x(x2 − 2x + 8)2)kn

162kn .

(3.10)

Thus the conclusion follows from
√

d = a1

√
1 + x < a1(16 + x(8− 2x + x2))/16.

�
As an example, we compute the asymptotic value of

√
19. Since d = 19 = 42+3 we have

a1 = 4, b1 = 3 and so a = 8, b = 3 and ∆ = 4d = 76. We take wn(3; 8, 3)/(2 hn(3; 8, 3)) as

the required value. From (1.2) and (1.3) we have

p3(x, y) = x3 − 3xy, q3(x, y) = 76x3 + 3xy.
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Whence (1.4) and (1.5) give

w0 =8,

w1 =83 − 3 · 8 · (−3)30

= 584,

w2 =5843 − 3 · 584 · (−3)31

= 199 224 008,

w3 =199 224 0083 − 3 · 199 224 008 · (−3)32

= 7 907 241 790 888 078 453 456 904;

h0 =1,

h1 =76 · 13 + 3 · 1 · (−3)30

= 67,

h2 =76 · 673 + 3 · 67 · (−3)31

= 22 852 561,

h3 =76 · 22 852 5613 + 3 · 22 852 561 · (−3)32

= 907 022 839 174 281 808 146 067

Thus from (3.2) we obtain

t3 = w3/(2h3) =w3(3; 8, 3)/(2 h3(3; 8, 3))

=4. 358 898 943 540 673 552 236 981 983 859 615 658 073 765 568 641 2

Substituting a1 = 4, b1 = 3 and k = n = 3 into (3.6) we obtain

ε < 1.11× 10−36.

Whence

tn + ε < 4. 358 898 943 540 673 552 236 981 983 859 615 659 2.

Thus, by (3.5) we get the asymptotic value of
√

19 with 37 significant figures

√
19 ≈ 4. 358 898 943 540 673 552 236 981 983 859 615 659.

Remark.

(1) We can give |tn −
√

d| a rude and simple estimation. Let f(x) = x2 − 2x + 8.

Since 0 < x = b1/a
2
1 ≤ 2a1/a

2
1 = 2/a1 ≤ 2, f(0) = f(2) = 8 and f(x) > 0 we have

f(x)2 ≤ 64 in (0, 2]. Then from (3.10) we have

|tn −
√

d| < 2
√

d
(64x)kn

162kn ≤ 2
√

d

(2a1)kn (3.11)
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Since
√

d < a1 + 1 we get

|tn −
√

d| < 2(a1 + 1)

(2a1)kn . (3.12)

(2) Even under the worst condition that a1 = 1, the accuracy of tn increases rapidly

as the number of iterations n increases:

For a1 = 1 and b1 = 1, we get asymptotic values of
√

2 with 20 significant figures

for n = 3 and with 49 significant figures for n = 4, respectively:

t3 = w3(3; 2, 1)/(2h3(3; 2, 1)) ≈ 1. 414 213 562 373 095 048 8,

t4 = w4(3; 2, 1)/(2h4(3; 2, 1))

≈ 1. 414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 377.

For a1 = 1 and b1 = 2, we get asymptotic values of
√

3 with 15 significant figures

for n = 3 and with 46 significant figures for n = 4, respectively:

t3 = w3(3; 2, 2)/(2h3(3; 2, 2)) ≈ 1. 732 050 807 568 88,

t4 = w4(3; 2, 2)/(2h4(3; 2, 2))

≈ 1. 732 050 807 568 877 293 527 446 341 505 872 366 942 805 254.

(3) By using the above method we can calculate the quadratic irrational root of the

form (r ± s
√

d)/t.

4. WARING TRANSFORMATIOM

Let φ be the one, which has a greater absolute, of α and β. It is known that

lim
n→∞

un+1(a, b)

un(a, b)
= φ.

To accelerate the convergence, a certain of authors [4], [2], [3] applied the Aitken trans-

formation

A(x, x′, x′′) = (xx′′ − x′ 2)/(x− 2x′ + x′′).

One of their main results is that for m ∈ Z+

Am(rn−1, rn, rn+1) = r2mn,
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where rn = un+1(a, b)/un(a, b).

In this section we present a transformation faster than the Aitken transformation for

accelerating the last convergence. In the same way as the last section we can prove that

lim
n→∞

vn(a, b)

un(a, b)
=

{√
∆ for a > 0,

−
√

∆ for a < 0.
(4.1)

Define sequence {Xn} of vectors

Xn = (vn(a, b), un(a, b)). (4.2)

Define the Waring transformation Rk of {Xn} by

Rk(Xn) = Rk(vn(a, b), un(a, b)) = (pk(vn(a, b), (−b)n), qk(un(a, b), (−b)n)). (4.3)

Then by (2.7) and (2.8)

Theorem 4.1.

Rk(Xn) = (vkn(a, b), ukn(a, b)) = Xkn. (4.4)

Let sn be the function of vector Xn:

sn = s(Xn) = s(vn(a, b), un(a, b)) =
a

2
± vn(a, b)

2un(a, b)
. (4.5)

Define the Waring transformation Tk of {sn} by

Tk(s(Xn)) = s(Rk(Xn)). (4.6)

By (4.1) and (4.5) it is easy to see that

lim
n→∞

sn =

{
a±
√

∆
2

for a > 0,
a∓
√

∆
2

for a < 0.
(4.7)

Furthermore, we have the faster acceleration

Theorem 4.2. For m ∈ Z+

Tm
k (sn) = skmn. (4.8)

Proof. By (4.5), (4.6) and (4.4) we have

Tk(sn) =Tk(s(Xn)) = s(Rk(Xn)) = s(Xkn) = skn,

T 2
k (sn) =Tk(Tk(sn)) = Tk(skn) = sk2n.

The proof can be completed by induction. �
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As an example, we calculate φ = (5 +
√

53)/2, one of the root of the polynomial

x2 − 5x − 7. In this case a = 5, b = 7 and ∆ = 53. In (4.8) let k = 3, n = 4 and m = 3.

Then

p3(x, y) = x3 − 3xy, q3(x, y) = 53x3 + 3xy.

It is easy to obtain X4 = (v4(5, 7), u4(5, 7)) = (1423, 195). From (4.3) and (4.4) we can

get

X3· 4 =(v3· 4, u3· 4) = (p3(v3· 4, (−7)4), q3(u3· 4, (−7)4) = (2 871 224 098, 39 439 296),

X32· 4 =(v32· 4, u32· 4) = (p3(v3· 4, (−7)12), q3(u3· 4, (−7)12)

=(23 670 164 102 419 511 976 900 320 098, 325 134 708 986 635 870 717 332 288),

X33· 4 =(v33· 4, u33· 4) = (p3(v32· 4, (−7)36), q3(u32· 4, (−7)36)

=(13 261 840 689 358 477 547 126 012 369 335 288 574 302 546

297 984 812 221 916 333 494 192 301 024 027 709 630 498,

1 821 653 916 087 951 284 501 193 293 229 347 673 997 530

816 709 149 896 760 276 510 649 401 359 934 202 208 640).

Whence (4.5) implies

s33· 4 =
5

2
+

v33· 4(5, 7)

2u33· 4(5, 7)
=6. 140 054 944 640 259 135 548 651 245 763 516 396 888 834

841 288 238 719 189 090 895 642 057 869 312 453

which is an asymptotic value of φ with 79 significant figures.

Remark. We can also calculate φ by using the method in the last section. Since 53 =

72 + 4 we have a1 = 7, b = b1 = 4 and so a = 14, ∆ = 212. Taking k = 3, n = 3 in (3.2)

we can get

√
53 ≈ t3 = 7. 280 109 889 280 518 271 097 302 491 527 032 793 777 669 682 576

477 438 378 181 791 284 115 738 624 905 183 329 579 409 080 926 75
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Thus

φ =(5 +
√

53)/2 ≈ (5 + t3)/2 ≈ 6. 140 054 944 640 259 135 548 651 245 763 516 396 888 834

841 288 238 719 189 090 895 642 057 869 312 452 591 664 789 704 540 463 38

which is an asymptotic value of φ with 99 significant figures. We observe that the number

of significant figures of s33· 4 is less than the one of (5 + t3)/2 under the same number of

iterations 3. To illustrate this we write

|skmn − φ| = 1

2

∣∣∣∣ vkmn

ukmn

−
√

∆

∣∣∣∣ =
√

∆

∣∣∣∣ βkmn

αkmn − βkmn

∣∣∣∣ ,

which is greater than

δ =
√

∆

∣∣∣∣βα
∣∣∣∣kmn

for αβ = −b > 0 or even n, and less than δ for αβ = −b < 0 and odd n. So, in the

example we should take an odd n(≥ 3) in stead of n = 4. However, for αβ = −b > 0

the accuracy of skmn may be lower than the one of (a + tn)/2 under the same number of

iterations.

CONCLUDING REMARK

The computer implementation of our method is easy so we omit it.
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