Equational Reasoning with Limited Knowledge

P. Purdon, University of Tasmania

Abstract

Rational automata [2] are autonomous communicating equational reasoning agents,
that operate within an algebraic model of a world of which they only possess partial
information. They seek to expand their knowledge of the world.

To do this they reason about what they know, and converse with other rational
automata within the world. Part of such conversations is the asking of questions. Ques-
tions are useful to a rational automaton as they allow the automaton to seek information
than can be used to expand its knowledge of the environment, and hence improve its
responses to that environment.

There are two types of questions used by an automaton - requests for information,
and requests for confirmation. We have found methods to generate such questions, and
have implemented these methods in Mathematica. We give examples of the questions
generated by these methods when they are applied to a (small) world.

Grobner Bases [3], Knuth-Bendix [1], and similiar algorithms are usually used in algebras
where the equations that define the algebra are viewed as expressing all things that are true in
the world that the equations model. If we define the meaning of a term in the algebra as being
the normal form that these algorithms reduce that term to, then we can use the algorithm to
perform equational reasoning. This reasoning process is thus aimed at simplifying the set of
equations that define the algebra, to make questions about equality of terms easier to answer.
Terms that cannot be proved to be equal using these equations and the rules of inference
of the reasoner; are assumed to be unequal. This is commonly known as the closed world
assumption, meaning that the world being modelled by the algebra is closed and that no new
information about the world can be found. Hence if something is not provably true now, it
never will be. Thus the world being modelled is static and unchanging.

In principle, the closed world assumption is equivalent to explicitly listing all the pairs of
terms that are not provably equal in our model of the world. Such pairs we call inequations,
and are just equations over which equality does not hold in the model. We denote them by
a#b.

Removing the assumption in favour of a set of inequations can only be done if the word
problem for the algebra is solvable, and even then the set of inequations is (potentially) infinite.
So inequations look to be of limited use.

But consider what happens if we allow the world being modelled to change with time.
Our model of the world must also reflect these changes. We could still keep the closed world
assumption, just applying it at each discrete step of the evolution of the model. As such, it
would still correspond to a (potentially) infinite set of inequations. But what if we only have



limited information about the world to construct our model from, say only those things we
initially knew and those things we have learned since then.

Then there are advantages to easing the restriction that the closed world assumption
makes on what i1s known about the world. We do keep the assumption, but we restrict it
to operating only on grounded functions; as such it becomes the unique names assumption
instead. We still use inequations to store those terms that we cannot prove to be equal, but
now the interpretation of what that means changes. Before it meant that the terms could
never be proven to be equal, now it has become that we cannot as yet prove them to be equal
or unequal; the truth value of the sentence is unknown at this time. Thus inequations are
used to store sentences whose truth value in the model is currently unknown.

The algebra we are using to model the world consists of a set of non-deterministic n-
ary functions with composition. The nullary functions are called the ground elements (or
constants) of the algebra. A term of the algebra is said to be grounded, or called a ground
term, if it ends in a ground element. We extend the definition of equality to be

J =g Vafa: flz] = a} = {b: glz] = b}

As normal, inequality holds when equality does not. For brevity, we denote fla] by fa from
now on.

1 Rational Automata

Rational automata [2] are autonomous communicating equational reasoning agents, that op-
erate over a limited type of algebraic structure, namely algebras of deterministic unary partial
functions. They are designed with working over non-deterministic partial functions in mind,
but currently the implementation does not support this. They are an attempt to investigate
what is actually required for efficient knowledge acquisition, and have so far managed to make
reasonable human-like conversation about their limited worlds. When several automata are
conversing we say they are particpating in a dialogue. The knowledge of any automaton is
stored as equations and inequations of the term algebra. Perhaps their most important feature
is that they are designed to function with limited and partial information about their world,
and the functions in it. They are also limited in contemplation time, with a requirement
for real-time interaction also imposed on them. They use a restriction of the Knuth-Bendix
algorithm to generate new knowledge, and to simplify what they know.

The question arises as to why rational automata would find inequations useful. There are
several reasons :

1) because they allow an automaton to express negative knowledge,

2) because with them an automaton can derive contradictions earlier,

3) and because they allow an automaton to form more questions.
The first reason means that automata can disagree with each other. That is, if one says that
a = b, and another happens to know the inequation a # b, the second automata can say that
it thinks that the first one is wrong.

We can still generate contradictions without inequations if we can simplify an equation
down to a = b, where a and b are distinct grounded functions of the algebra. Then the
unique names assumption comes into consideration, allowing us to find the contradiction still.



However, having inequations allows contradictions to be found that are not yet reducible to
such grounded equalities, and indeed may never be.

In this paper we are primarily interested in the third reason, the ability to form questions.
Questions allow the automaton to seek information about the world it is in, and hence to
refine its model of that world. In evolutionary terms, such an improved model equates to
improved fitness, and hence ability to survive. Inequations allow the formation of many more
questions than just equations, as can be seen in later in this paper.

Of course, to be useful, the automaton needs someone to answer its questions. To give our
automata someone to talk to, we run several together in a dialogue.

2 Active systems

Computer algebra systems and theorem provers are usually passive, that is they do not seek
additional information about the world they exist in. This is due to the closed world as-
sumption being applied at all levels of the algebra, not just the ground level as we do with
rational automata. With the closed world assumption present this behaviour is justified, as
no additional information will alter the answer the system gives to a question, as it already
knows all there is to know.

Consider what would happen in any system to a question if the closed world assumption
is present at all levels. The system could ask itself the question it has generated, and it would
either reduce the question down to True, meaning that the question is a consequence of the
equations it already knows, or reduce it down to an irreducible equation. The assumption
would then take that irreducible equation and say that it must be False (as it cannot be
proved True). Thus there is no need to ask anything else the question, as the system can
answer the question itself. With the closed world assumption any system can always answer
its own questions (and any other question as well). Such a system is an oracle for the world
modelled by the algebra.

Clearly for any kind of system that is going to truly interact with another system (human
or otherwise) this is not the behaviour that is wanted. So we have chosen to create an active
system, one that asks questions about its world, without being prompted. Also clearly, such
an active system cannot have the closed world assumption acting as just described.

Wang [4] has created in his NARS what we call a weakly active system, that is a system
that will ask questions, but only to help it answer a question it was asked. Thus the question
it asks is a derivative of what it was asked and what it knows. It does not spontaneously ask
a question that may be unrelated to the dialogue so far.

Wang has his own working definition of intelligence, which is “Intelligence is the capacity of
an information-processing system to adapl to its environment while operating with insufficent
knowledge and resources” [5].

However, his NARS system does not seek to adapt to its environment except to re-prioritize
what to think about next. The possesion of curiousity seems to be implicit in his definition,
as before one can decide how to adapt to an environment, one needs to acquire knowledge of
that environment; and to do so it helps to ask questions.

Independently, we have made automata with the goal of investigating methods of acquiring
and sharing knowledge efficiently. A property of such a system would seem to be the ability



to find gaps in their own knowledge of the world, and seeking to fill these gaps in. Hence our
automata exhibit a desire to know about their environment, so they can improve their model
of the world in which they lives. Thus our automata seem to fit Wang’s definition also.

We are trying to make a system that strives within the bounds of limited resources to
model its world. The system must find out about its world, and an effective method of doing
so 1s to ask questions of any other entities within that world. Of course, to ask questions one
must first generate them, which is the main topic here.

As stated before, there are two types of questions. Requests for confirmation are just
sentences that the automaton suspects may hold in the world, and are based on an inductive
style of generation from its knowledge. So we may have the sentence father Bart = father
Lisa, which is interpreted in english to be “Is the father of Bart the same person as the father
of Lisa?”.

As we see later, one advantage of this style of generation is that it will produce ques-
tions that make sense. This is particularly important for the automatons, as they have no
information about the form of their world embedded within them.

Requests for information are terms within the algebra, but they are terms that are drawn
from the equations and inequations the automaton knows already. They can be drawn from
any inequation or equation which does not have just a ground element on any side. So from
the above example of father Bart = father Lisa, we can get two requests for information, which
are father Bart and father Lisa. These are interpreted to be “Who is the father of Bart?” and
“Who is the father of Lisa?”.

Any attempt to generate questions is obviously going to need more than just a declarative
view of the world, as questions are implicitly not declarative in nature. Thus we need to provide
the automata with a means of going beyond the declarative nature of their knowledge, into
the realm of speculation. As we want them to maintain their knowledge as consistent with
the world as they can, we do not want untested speculations as part of that knowledge. We
also do not want wild speculation about circumstances that cannot exist in their world. So
we need a method of generating questions about the world they know, that are a reasonable
attempt to extend what they know, and that they cannot themselves answer quickly. We have
found methods of generating such questions, that make use of the fact that in an open world
we are unlikely to have total knowledge about any of the functions in that world.

In order to ask a question the automaton needs to be able to form questions from the
information it knows, without prompting from any other participant in the dialogue. Indeed,
it should be capable of generating questions when there are no other participants, and keeping
those questions until it has someone to talk to.

3 Generating Questions

3.1 The Scattershot Approach

Perhaps the most obvious way of generating questions is the scattershot approach. This is to
simply choose two terms from the algebra, and use the current state of knowledge to reduce
them to their normal forms. If they are equal (or provably unequal), then choose another two
terms and start again. If not, then these two normal forms make a potential question, that



will expand our knowledge of the structure of the algebra.

This approach is best kept in storage, and only used if the other methods of generating
questions do not generate any questions. This is particularly due to the sheer amount of
computational resources that this method may consume to find possible questions.

In practice, to use this approach efficiently we would need heuristics for guiding the selec-
tion of the terms to consider, but doing this without involving outside semantic knowledge in
the heuristic seems improbable. Without these heuristics, the process would consider many
terms that are syntactically correct, but are semantically meaningless (that is, they corre-
spond to nothing in the world being modelled). This means that questions generated by this
scattershot style approach are likely to be irrelevant to any conversation.

Indeed, for this approach this problem is likely as we have not placed any form of typing
restrictions on our system. Thus the syntax will allow us to generate (semantically) nonsensical
terms, wherein the domains and codomains of the operators in the terms do not even match.

3.2 Requests for Information

The scattershot approach can obviously be trivially altered to produce questions that ask for
information, rather than just confirmation as described. This is as simple as only asking about
one of the two terms being considered. However, the problem mentioned at the end is still
present.

We do have a source of terms that are reasonable questions though, the automatons own
knowledge. If we process the knowledge of an automaton, keeping in a set all those terms we
find that are not just ground elements, then we have accumulated a set of questions that will
expand the automatons knowledge of its world.

Using this method, we can quickly produce list of reasonable questions, which as a bonus
will have the advantage of simplifying the automatons knowledge (with no loss of information
content).

3.3 Requests for Confirmation

We have found ways of combining equations and inequations to form questions that are both
well-formed terms in the model and also correspond to things in the world, using only the
assumption that all knowledge the automaton has accurately corresponds to the world also
(that is, the knowledge is correct semantically). This will of course be met in pratice, as long
as any human input is also semantically correct. This is due to the Knuth-Bendix algorithm [1]
always preserving the syntax and semantics of the model, and noticing that all other automata
in the dialogue operate in this way too. The Knuth-Bendix algorithm performs in this fashion
as it equates to replacing equals with equals, which of course preserves the correctness of the
syntax and semantics of the model.

The generation of questions is split into sections, each based on how the questions are being
formed. These sets of questions are then merged to remove duplicates, and a preliminary
reduction using the automatons knowledge is done. The question is only left in the set of
questions to ask if the automaton that generated it cannot reduce it to either True or False.
The automaton can only do so if it is a consequence of the automatons knowledge. Thus if the
question survives reduction by the automaton that generates it, the question is a reasonable



conjecture by that automaton at that time. This allows us to meet the above criteria that the
questions be such that the automaton itself cannot quickly answer them.

Here we define these methods in terms of non-deterministic partial unary functions, for
relative simplicity. They can be restricted to grounded equations, and also extended to n-
ary functions, easily. The restriction to grounded equations renders some rules no longer
applicable, and when extending to n-ary functions we can use the properties of the function
to generate additional questions. That is, from a(b,c¢) = d and a(e, f) = d we can get the
questions {{b, e}, {c, f}}. If we know that a is also commutative, then the additional questions
{{b, f},{c,e}} should also be considered. Note that in this case, as well as some described
below, the set of questions is not independent. This is actually useful, as it provides the
automaton with several alternate routes to finding an answer.

We also do not give the converses of these rules, which nearly all of them have (the
exception is noted). By converse, we merely mean the variant of the rule with the order of
composition reversed. That is, ba = ¢ instead of ab = ¢ etcetera.

From two equations

If we take two equations like ab = d and ac = d, what can we conclude about the functions
b and ¢? We can conclude that for all elements within the domain of a, they must agree
(or else we could generate a counter-example to one of the equations by using that element).
What happens though if b and ¢ have domains that include elements not in the domain of
a? What can we say then? Obviously we cannot conclude that b and ¢ are equal, without
knowing the domains of all the functions. We also cannot conclude they are not equal (as we
do not have the closed world assumption unless b and ¢ are ground elements). Also, we do
not know if they may become equal in the future, due to additions and/or revisions to our
knowledge. Therefore the only reasonable recourse is to put the matter of ‘does b = ¢?’ into
the category of ask someone else. Thus it becomes a reasonable question, one based on the
available knowledge. It is also a reasonable extension of our knowledge to seek, being based
on what we know to hold.

TE : {ab = d,ac = d} generates {{b,c}}
From two inequations

Somewhat similiar reasoning can be done with two inequations, ab # ¢ and b # d. Here we
have more uncertainty about possible equalities. Consider that although b # d, that inequality
of b and d may occur outside the domain of a. Thus, within a’s domain, we may have b = d.
That would make ad = ¢ an equation that holds as well. Thus as we do not know where b is
unequal to d, we are justified in adding ‘does ad = ¢?’ to the set of questions. We can also
raise the question of whether ab = ad as well, for the same reason.

TI1 : {ab # ¢,b # d} generates {{ad, c},{ab,ad}}

There are several variants on this, based on which of the sentences above are considered
to be inequations or questions.



TI2 : {ab # ¢,ad # ¢} generates {{b,d},{ab,ad}}
TI3 : {ab # ¢, ab # ad} generates {{ad, c}}

A separate path comes from ab # d and be # e. 1t is based on replacing the use of equations
in the Knuth-Bendix inference rule Deduce with inequations, and seeking to find whether any
of the conclusions from this deduction hold, that is whether abc = dc, abe = ae, or de = ae.
The first two are also the case of considering whether we have made a sufficient restriction to
the domain of the previous inequation that is has become an equation. That is, that by pre
(or post) composing the inequation with another function we have restricted the domain of
the new inequation to such an extent that equality now holds. We are assured that the new
terms will still make sense as long as the input inequations do.

This gives us the following (which is its own converse),

TI4 : {ab # d,bc # e} generates {{abe, dc}, {abc,ae},{dc,ae}}
From one equation

This is a variant of the above cases, where we consider stripping the first /last function off
existing equations. That is, if we remove the restriction that a places on ab = ad, does b = d?

OE : {ab = ad} generates {{b,d}}
From one each
Another rearrangment of equalities from the FromTwolneq reasoning leads us to the cases of
OIOE1 : {ab = c},{b # d} generates {{ad,c}}
OIOE2 : {ab = e}, {bc # d} generates {{ad,ec}}
From one inequation

We could consider the possibility of pre/post composing an inequation b # d by some a,
and it would generate something that we could ask. Having the a before/after the inequation
restricts the set of cases to consider, possibly removing from consideration those cases that
make the inequality. However, such a method takes no accound at all of the semantics of the
resulting question ‘is ab = ad?’. 1t is quite likely that we have semantic nonsense again, as
we have no guide as to whether the composition makes sense. In the previous cases, such
semantic issues where handled by the involvement of the second equation/inequation, or by
stripping the first/last function off an equation.



4 Examples

We deal here with a toy world, based on the normal cartesian plane. It has four ground
functions representing points, A, B, ', D. It also has two unary functions r and h, which
take points to points, with r performing a 90 degree counter-clockwise rotation, and h a
reflection about the x-axis.

Such a simple world is used so as to not obscure the workings of the question generation
with unnecessary detail in the model.

If we allow {rA = B,hA = B}, then from TE we get the question does r = h?. This is
reasonable, as if for all points we know about we have their reflection and their rotation being
the same point, it is sensible to ask whether this always is the case.

For TI1, having {rB # C, B # D} means generate the questions {{rB,rD},{rD,C}}.
These are both reasonable, as if rB # C' and B # D then it is possible that rD = C and
rB = rD. Remember that we have no other information to work with, in particular, we know
nothing about the point D, other than it not being the same point as B. Note that this
particular instance would not occur in practice, as B # D would never be explicitly in the
knowledge of an automaton (it is a consequence of the unique names assumption). We have
used it here for clarity.

Similiarly for TI2, and TI3; if we have {rB # C,B # D,hB # hD,rA # C} then we
get the set of questions {{B, A}, {rB,rA},{rB,rD},{rD,C}}. Note that {B, A} would be
removed from the list of questions, as it is just an example of the unique names assumption
again.

Starting with {rh # h,hB # C}, T14 gives {{hB,rC},{rhB,hB},{rhB,rC}}. These
are all the result of considering the term rhA B, and what we could simplify it to. We know
that rh # h, but the possibility exists that even so rhB could equal hB. Similiarly for the
other two questions.

For OE we have left the results of the converse in, to further illustrate what we mean by
converse. So from {rhA = rA}, it gives us {{hA, A}, {rh,r}}. As you can see, it has matched
on both ab = ad and ba = da, to give us two questions.

Finally, OIOE1 generates {{rC, B}} from {rA = B,A # C}, and OIOE2 generate
{{hrrrB,rC}} from {rh = hrrr,h B # C}.

Examples for the other methods given previously are not given, as they are straightforward
to generate.

5 Conclusion

We have described the basics of an automaton that uses equational reasoning to manipulate
its algebraic model of the world. As the automaton is only given partial knowledge of that
world initially, it seeks out additional information via the process of generating and asking
questions. The methods given here produce questions that seek to extend the automatons
knowledge, or that will verify the inductive conjectures of the automaton. So our automatons
are active systems, that initiate the process of knowledge acquisition, and by doing so they
share knowledge among themselves in an efficient manner.



References

[1] Dershowitz, N., Jouannaud, J.P., Rewrite Systems. In Leeuwen, J. van, (ed.): Handbook
of Theoretical Computer Science Vol. B, 243-320 (1990).

[2] Fearnley-Sander, D., Mathematical Structures for Rational Discourse. In Fitz-Gerald, G.,
Wang, D. and Yang, W-C. (eds.): Proceedings of the 4th Asian Technology Conference
in Mathematics, 311-320 (1999).

[3] Cox, D., Little, J. O’Shea, D., Ideals, Varieties, and Algorithms, chapter 2, 48-112 (1992).

[4] Wang, P., Non-Axiomatic Reasoning System (Version 4.1), Proceedings of the Seven-
teenth National Conference on Artificial Intelligence, 1135-1136, (2000).

[5] Wang, P., On the Working Definition of Intelligence, Technical Report 96, Center for
Research on Concepts and Cognition, Indiana University (1994).



